

Effects of Mandarin Tones on the Production of English Intonation

Min Zeng (Waseda University) zengmin@fuji.waseda.jp, zengmin311@gmail.com

Background

Tone language and non-tonal language

- Mandarin is a typical tone language
- English is a typical non-tonal language
- Mandarin speakers rely on their **lexical tones inventory** to produce English prosody (Ploquin, 2013)

Intonation

• Deviations in the production of **L2** (second language) stress, rhythm and intonation may affect listeners' judgments more than deviations in the production of L2 vowels and consonants (Trofimovitch & Baker, 2006)

Pitch range

- Mandarin EFL learners seem to have a wider pitch range than native English speakers, but only in single-word level (Ding, Hoffmann & Hirst, 2016)
- Both English and Mandarin speakers exhibited a considerably **narrower F0 range** overall in their **L2** than in their L1 (Viger, 2007)

Methodology

Participants

- 6 males + 5 females = **11 American** native English speakers (**ES**)
- 6 males + 6 females = **12 Mandarin** speakers (English advanced level – TOEFL iBT > 80; **MS**)

Materials & Stimuli

- 12 English **yes-no questions**, declarative sentences, and echo questions (9, 8 and 8 syllables, respectively)
- with English words: **fan**, pin, wall, line, **lawyer**, money, onion, winner, enemy, animal, **foreigner**, and millionaire at the end

Examples of voice recording materials

- Did Ann go to see a new lawyer?
- Yes. Ann went to see a new *lawyer*.
- Really? Ann went to see a new *lawyer*?

Procedures

Research Questions

- 1. How the pitch range of Mandarin EFL learners and native English speakers differ in producing English yes-no questions?
- 2. Do bilingual (Mandarin and English) and trilingual (Mandarin, English, and Japanese) speakers exhibit different pitch range in producing English yes-no questions?

- 1. Participants fill a questionnaire about their language background
- 2. Record voice of each participant (**three repetitions** of each sentence)
- 3. Use **Praat** to extract **pitch values** (Nuclear Pitch Accent (NPA),

Phrase Accent (PA), and **Boundary tone** (BT))

- > NPA is the last pitch accent in a phrase; PA is an additional tone after the NPA; **BT** is a rise or fall in pitch at the end of the intonational phrases or sentences. High boundary tone causes a rising pitch contour, signaling the question
- 4. Perform **MANOVA** (Multivariate Analysis of Variance) to compare pitch values of the **ES** and **MS** groups:

Independent Variables: Nationality and Gender

Dependent Variables: NPA & BT in **FAN**; NPA, PA, & BT in **LAWYER**; and NPA1, NPA2, PA, & BT in **FOREIGNER**

Results

Pitch range from NPA to BT of the ES and MS groups in English yes-no questions

Results of **MANOVA** to compare pitch values

(FAN, LAWYER, and FOREIGNER, respectively) between the ES and MS groups

Box's Test	Multivariate Test - Pillai's Trace						
Sig.	Effect	Value	F	df	Error df	Sig.	Partial Squar
	Intercent	072	1101 51	2	61	000	C

• The results of the Box's Test were **significant** for FAN, LAWYER, and

Discussions and Conclusion

English speakers and Mandarin speakers show **clear pitch rising** in English yes-no questions **Pitch range:**

Clear differences between gender; Mandarin speakers exhibited a higher pitch level than English speakers **Pitch level:**

→ Mandarin's high pitch level influences Mandarin speakers in producing English intonation (cf, Ding, Hoffmann & Hirst, 2016; Eady, 1982; Ploquin, 2013)

Further Study

- Analyze the remaining data for larger sample sizes to see if there were change in the results of the Box's Test
- Perform MANOVA for declarative sentences and echo questions to see if the results are consistent
- Divide the Mandarin speakers into two groups bilingual and trilingual group to see if the two groups had significant differences in pitch range at boundary tones

References

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge.

Ding, H., Hoffmann, R., & Hirst, D. (2016). Prosodic transfer: A comparison study of f0 patterns in I2 english by chinese speakers. In Speech Prosody (Vol. 2016, pp. 756-760).

Eady, S. J. (1982). Differences in the F0 patterns of speech: Tone language versus stress language. Language and speech, 25(1), 29-42.

Kainada, E., & Lengeris, A. (2015). Native language influences on the production of second-language prosody. Journal of the International Phonetic Association, 45(3), 269-287.

Keating, P., & Kuo, G. (2012). Comparison of speaking fundamental frequency in english and mandarin. Acoustical Society of America, 132(2), 1050–1060. Ladefoged, P., & Johnson, K. (2014). A course in phonetics. Nelson Education.

Mennen, I., & de Leeuw, E. (2014). Beyond segments. Studies in Second Language Acquisition, 36(02), 183–194.

Ploquin, M. (2013). Prosodic Transfer: From chinese lexical tone to english pitch accent. Advances in Language and Literary Studies, 4(1), 68–77.

Trofimovich, P., & Baker, W. (2006). Learning second language suprasegmentals: Effect of L2 experience on prosody and fluency characteristics of L2 speech. Studies in Second Language Acquisition, 28(1), 1-30.

Viger, T. L. (2007). Fundamental frequency in Mandarin Chinese and English: Implications for second-language speakers (Doctoral dissertation, City University of New York).